\(\int \frac {\cos ^3(c+d x) \cot ^2(c+d x)}{(a+a \sin (c+d x))^3} \, dx\) [558]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F(-1)]
   Maxima [A] (verification not implemented)
   Giac [B] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 29, antiderivative size = 47 \[ \int \frac {\cos ^3(c+d x) \cot ^2(c+d x)}{(a+a \sin (c+d x))^3} \, dx=-\frac {\csc (c+d x)}{a^3 d}-\frac {3 \log (\sin (c+d x))}{a^3 d}+\frac {4 \log (1+\sin (c+d x))}{a^3 d} \]

[Out]

-csc(d*x+c)/a^3/d-3*ln(sin(d*x+c))/a^3/d+4*ln(1+sin(d*x+c))/a^3/d

Rubi [A] (verified)

Time = 0.08 (sec) , antiderivative size = 47, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.103, Rules used = {2915, 12, 90} \[ \int \frac {\cos ^3(c+d x) \cot ^2(c+d x)}{(a+a \sin (c+d x))^3} \, dx=-\frac {\csc (c+d x)}{a^3 d}-\frac {3 \log (\sin (c+d x))}{a^3 d}+\frac {4 \log (\sin (c+d x)+1)}{a^3 d} \]

[In]

Int[(Cos[c + d*x]^3*Cot[c + d*x]^2)/(a + a*Sin[c + d*x])^3,x]

[Out]

-(Csc[c + d*x]/(a^3*d)) - (3*Log[Sin[c + d*x]])/(a^3*d) + (4*Log[1 + Sin[c + d*x]])/(a^3*d)

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 90

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Int[ExpandI
ntegrand[(a + b*x)^m*(c + d*x)^n*(e + f*x)^p, x], x] /; FreeQ[{a, b, c, d, e, f, p}, x] && IntegersQ[m, n] &&
(IntegerQ[p] || (GtQ[m, 0] && GeQ[n, -1]))

Rule 2915

Int[cos[(e_.) + (f_.)*(x_)]^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*sin[(e_.) + (f_.)
*(x_)])^(n_.), x_Symbol] :> Dist[1/(b^p*f), Subst[Int[(a + x)^(m + (p - 1)/2)*(a - x)^((p - 1)/2)*(c + (d/b)*x
)^n, x], x, b*Sin[e + f*x]], x] /; FreeQ[{a, b, e, f, c, d, m, n}, x] && IntegerQ[(p - 1)/2] && EqQ[a^2 - b^2,
 0]

Rubi steps \begin{align*} \text {integral}& = \frac {\text {Subst}\left (\int \frac {a^2 (a-x)^2}{x^2 (a+x)} \, dx,x,a \sin (c+d x)\right )}{a^5 d} \\ & = \frac {\text {Subst}\left (\int \frac {(a-x)^2}{x^2 (a+x)} \, dx,x,a \sin (c+d x)\right )}{a^3 d} \\ & = \frac {\text {Subst}\left (\int \left (\frac {a}{x^2}-\frac {3}{x}+\frac {4}{a+x}\right ) \, dx,x,a \sin (c+d x)\right )}{a^3 d} \\ & = -\frac {\csc (c+d x)}{a^3 d}-\frac {3 \log (\sin (c+d x))}{a^3 d}+\frac {4 \log (1+\sin (c+d x))}{a^3 d} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.04 (sec) , antiderivative size = 35, normalized size of antiderivative = 0.74 \[ \int \frac {\cos ^3(c+d x) \cot ^2(c+d x)}{(a+a \sin (c+d x))^3} \, dx=-\frac {\csc (c+d x)+3 \log (\sin (c+d x))-4 \log (1+\sin (c+d x))}{a^3 d} \]

[In]

Integrate[(Cos[c + d*x]^3*Cot[c + d*x]^2)/(a + a*Sin[c + d*x])^3,x]

[Out]

-((Csc[c + d*x] + 3*Log[Sin[c + d*x]] - 4*Log[1 + Sin[c + d*x]])/(a^3*d))

Maple [A] (verified)

Time = 0.41 (sec) , antiderivative size = 39, normalized size of antiderivative = 0.83

method result size
derivativedivides \(\frac {-\frac {1}{\sin \left (d x +c \right )}-3 \ln \left (\sin \left (d x +c \right )\right )+4 \ln \left (1+\sin \left (d x +c \right )\right )}{d \,a^{3}}\) \(39\)
default \(\frac {-\frac {1}{\sin \left (d x +c \right )}-3 \ln \left (\sin \left (d x +c \right )\right )+4 \ln \left (1+\sin \left (d x +c \right )\right )}{d \,a^{3}}\) \(39\)
parallelrisch \(\frac {-\sec \left (\frac {d x}{2}+\frac {c}{2}\right ) \csc \left (\frac {d x}{2}+\frac {c}{2}\right )-6 \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )\right )+16 \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )-2 \ln \left (\sec ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{2 d \,a^{3}}\) \(70\)
risch \(-\frac {i x}{a^{3}}-\frac {2 i c}{d \,a^{3}}-\frac {2 i {\mathrm e}^{i \left (d x +c \right )}}{d \,a^{3} \left ({\mathrm e}^{2 i \left (d x +c \right )}-1\right )}+\frac {8 \ln \left ({\mathrm e}^{i \left (d x +c \right )}+i\right )}{d \,a^{3}}-\frac {3 \ln \left ({\mathrm e}^{2 i \left (d x +c \right )}-1\right )}{d \,a^{3}}\) \(91\)
norman \(\frac {\frac {37 \left (\tan ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d a}+\frac {37 \left (\tan ^{9}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d a}+\frac {73 \left (\tan ^{6}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d a}+\frac {73 \left (\tan ^{7}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d a}-\frac {1}{2 a d}-\frac {\tan ^{13}\left (\frac {d x}{2}+\frac {c}{2}\right )}{2 d a}+\frac {11 \left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{2 d a}+\frac {11 \left (\tan ^{11}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{2 d a}+\frac {35 \left (\tan ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{2 d a}+\frac {35 \left (\tan ^{10}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{2 d a}+\frac {119 \left (\tan ^{5}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{2 d a}+\frac {119 \left (\tan ^{8}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{2 d a}}{\left (1+\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )^{3} \tan \left (\frac {d x}{2}+\frac {c}{2}\right ) a^{2} \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )^{5}}-\frac {3 \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d \,a^{3}}+\frac {8 \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )}{d \,a^{3}}-\frac {\ln \left (1+\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d \,a^{3}}\) \(323\)

[In]

int(cos(d*x+c)^5*csc(d*x+c)^2/(a+a*sin(d*x+c))^3,x,method=_RETURNVERBOSE)

[Out]

1/d/a^3*(-1/sin(d*x+c)-3*ln(sin(d*x+c))+4*ln(1+sin(d*x+c)))

Fricas [A] (verification not implemented)

none

Time = 0.27 (sec) , antiderivative size = 52, normalized size of antiderivative = 1.11 \[ \int \frac {\cos ^3(c+d x) \cot ^2(c+d x)}{(a+a \sin (c+d x))^3} \, dx=-\frac {3 \, \log \left (\frac {1}{2} \, \sin \left (d x + c\right )\right ) \sin \left (d x + c\right ) - 4 \, \log \left (\sin \left (d x + c\right ) + 1\right ) \sin \left (d x + c\right ) + 1}{a^{3} d \sin \left (d x + c\right )} \]

[In]

integrate(cos(d*x+c)^5*csc(d*x+c)^2/(a+a*sin(d*x+c))^3,x, algorithm="fricas")

[Out]

-(3*log(1/2*sin(d*x + c))*sin(d*x + c) - 4*log(sin(d*x + c) + 1)*sin(d*x + c) + 1)/(a^3*d*sin(d*x + c))

Sympy [F(-1)]

Timed out. \[ \int \frac {\cos ^3(c+d x) \cot ^2(c+d x)}{(a+a \sin (c+d x))^3} \, dx=\text {Timed out} \]

[In]

integrate(cos(d*x+c)**5*csc(d*x+c)**2/(a+a*sin(d*x+c))**3,x)

[Out]

Timed out

Maxima [A] (verification not implemented)

none

Time = 0.22 (sec) , antiderivative size = 44, normalized size of antiderivative = 0.94 \[ \int \frac {\cos ^3(c+d x) \cot ^2(c+d x)}{(a+a \sin (c+d x))^3} \, dx=\frac {\frac {4 \, \log \left (\sin \left (d x + c\right ) + 1\right )}{a^{3}} - \frac {3 \, \log \left (\sin \left (d x + c\right )\right )}{a^{3}} - \frac {1}{a^{3} \sin \left (d x + c\right )}}{d} \]

[In]

integrate(cos(d*x+c)^5*csc(d*x+c)^2/(a+a*sin(d*x+c))^3,x, algorithm="maxima")

[Out]

(4*log(sin(d*x + c) + 1)/a^3 - 3*log(sin(d*x + c))/a^3 - 1/(a^3*sin(d*x + c)))/d

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 101 vs. \(2 (47) = 94\).

Time = 0.35 (sec) , antiderivative size = 101, normalized size of antiderivative = 2.15 \[ \int \frac {\cos ^3(c+d x) \cot ^2(c+d x)}{(a+a \sin (c+d x))^3} \, dx=-\frac {\frac {2 \, \log \left (\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + 1\right )}{a^{3}} - \frac {16 \, \log \left ({\left | \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 1 \right |}\right )}{a^{3}} + \frac {6 \, \log \left ({\left | \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) \right |}\right )}{a^{3}} + \frac {\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )}{a^{3}} - \frac {6 \, \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - 1}{a^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )}}{2 \, d} \]

[In]

integrate(cos(d*x+c)^5*csc(d*x+c)^2/(a+a*sin(d*x+c))^3,x, algorithm="giac")

[Out]

-1/2*(2*log(tan(1/2*d*x + 1/2*c)^2 + 1)/a^3 - 16*log(abs(tan(1/2*d*x + 1/2*c) + 1))/a^3 + 6*log(abs(tan(1/2*d*
x + 1/2*c)))/a^3 + tan(1/2*d*x + 1/2*c)/a^3 - (6*tan(1/2*d*x + 1/2*c) - 1)/(a^3*tan(1/2*d*x + 1/2*c)))/d

Mupad [B] (verification not implemented)

Time = 10.38 (sec) , antiderivative size = 71, normalized size of antiderivative = 1.51 \[ \int \frac {\cos ^3(c+d x) \cot ^2(c+d x)}{(a+a \sin (c+d x))^3} \, dx=-\frac {3\,\ln \left (\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )\right )-8\,\ln \left (\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )+1\right )+\frac {\mathrm {cot}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}{2}+\frac {\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}{2}+\ln \left ({\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2+1\right )}{a^3\,d} \]

[In]

int(cos(c + d*x)^5/(sin(c + d*x)^2*(a + a*sin(c + d*x))^3),x)

[Out]

-(3*log(tan(c/2 + (d*x)/2)) - 8*log(tan(c/2 + (d*x)/2) + 1) + cot(c/2 + (d*x)/2)/2 + tan(c/2 + (d*x)/2)/2 + lo
g(tan(c/2 + (d*x)/2)^2 + 1))/(a^3*d)